LEJ4Learning
  1. Introduction
  2. Model of computation, 2-d maxima
  3. Analysis of 2-d Maxima
  4. Runtime analysis
  5. 2-d maxima: sweep line algorithm
  6. Asymptotic Notation
  7. Asymptotic notation, merge sort
  8. Analysis of Merge Sort
  9. Solving recurrence relations, median selection
  10. Median selection – partitioning algorithm
  11. Analysis of median selection, binary heaps, sorting
  12. Heap sort, analysis of heap sort
  13. Quick sort
  14. Analysis of quick sort
  15. Lower bounds for sorting, Linear time sorting, counting sort
  16. Bucket sort, radix sort, dynamic programming, Fibonacci sequence
  17. Dynamic programming – edit distance algorithm
  18. Dynamic programming – chain matrix multiply
  19. Dynamic programming – chain matrix multiply
  20. Dynamic programming – 0/1 knapsack
  21. Dynamic programming – 0/1 knapsack
  22. Greedy algorithms – coin change problem
  23. Greedy algorithms – Huffman encoding
  24. Greedy algorithms – Huffman encoding
  25. Greedy algorithms – Activity scheduling
  26. Greedy algorithms – fracitional knapsack, Graphs – definitions
  27. Graphs – representations, traversal
  28. Graphs – breadth-first search, generic traversal algorithms
  29. Graphs – generic traversal algorithms
  30. Graphs – depth-first search, timestamp structure
  31. Graphs – cycles, topological sorting
  32. Graphs – strong components
  33. Graphs – strong components, minimum spanning tree (MST)
  34. Graphs – MST: generic approach
  35. Graphs – MST: Kruskal’s algorithm
  36. Graphs – MST: Prim’s algorithm
  37. Graphs – shortest paths
  38. Graphs – Dijkstra’s algorithm
  39. Graphs – Dijkstra’s algorithm, Bellman-Ford algorithm
  40. Graphs – all-pairs shortest path, Floyd-Warshall’s algorithm
  41. Graphs – Floyd-Warshall algorithm
  42. Complexity theory -classes P, NP
  43. Complexity theory – Reductions, graph coloring
  44. Complexity theory – boolean satisfiability, independent sets

Meta Search Engine