Menu
|
111-222-292 (Ext: 245)
Home
|
About US
|
Creditors
|
Mentorship
|
Faq
Home
About US
Creditors
Mentorship
Faq
Lecture
SEARCH COURSES / LECTURES
Search Lectures
Search Courses
All Disciplines
Basic and Health Sciences
Applied Sciences
Social Sciences
All Levels
Undergraduate
All Levels
School
College
University
--Graduate
--Undergraduate
Mixed
All Institutes
Khan Academy Urdu
Virtual Education Project Pakistan (VEPP)
Harvard
UCI Open
MIT
Oxford
Yale University
Khan Academy
Udacity
Stanford
Virtual University
Home
>>
Engineering
>>
Electrical Engineering and Computer Science (M-I-T)
>>
Deep Learning (2020) (M-I-T)
Deep Learning (2020) (M-I-T)
(11 Lectures Available)
S#
Lecture
Course
Institute
Instructor
Discipline
1
Barack Obama: Intro to Deep Learning (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Alexander Amini
Applied Sciences
2
Convolutional Neural Networks
Deep Learning (2020) (M-I-T)
MIT
Alexander Amini
Applied Sciences
3
Deep Generative Modeling (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Ava Soleimany
Applied Sciences
4
Deep Learning New Frontiers (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Ava Soleimany
Applied Sciences
5
Generalizable Autonomy for Robot Manipulation (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Animesh Garg
Applied Sciences
6
Introduction to Deep Learning | 6.S191
Deep Learning (2020) (M-I-T)
MIT
Alexander Amini
Applied Sciences
7
Machine Learning for Scent (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Alex Wiltschko
Applied Sciences
8
Neural Rendering (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Chuan Li
Applied Sciences
9
Neurosymbolic AI (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
David Cox
Applied Sciences
10
Recurrent Neural Networks
Deep Learning (2020) (M-I-T)
MIT
Ava Soleimany
Applied Sciences
11
Reinforcement Learning (M-I-T)
Deep Learning (2020) (M-I-T)
MIT
Alexander Amini
Applied Sciences
Basic and Health Sciences
Biology
Chemistry
Mathematics
Physics
Medicine
Test Prep
Applied Sciences
Agricultural Science
Computer Science
Earth, Atmospheric, and Planetary Sciences
Energy
Engineering
Healthcare
Social Sciences
Business and Finance
Economics
English
History
Arts and Humanities
Law
Literature and Linguistics
Management
Marketing
Mass Communication
Philosophy
Physical Education
Political Science
Psychology
Sociology